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A formalism is developed to study stimulated emission by external sources in 
relativistic quantum field theory as a generalization of an earlier work involving 
essentially noninteracting particles. A general expression is derived for transition 
amplitudes for the production of an arbitrary number of particles, as final 
products, by emission sources when there is initially an arbitrary number of 
particles before the intervention of the emission sources, thus stimulating the 
latter for further emissions. An application to quantum electrodynamics is then 
given in the presence of an external electromagnetic current with an initial 
background radiation of an arbitrary number of photons with unspecified 
momenta and spins leading to an electron-positron pair as final products. 

1. I N T R O D U C T I O N  

In a prev ious  p a p e r  ( M a n o u k i a n ,  1986) a s tudy  was car r ied  out  for  
s t imula ted  emiss ion  by  ex te rna l  sources,  essent ia l ly  for  non in te rac t ing  par t i -  
cles. The  p u r p o s e  o f  this  p a p e r  is to genera l ize  this  work  to the far  more  
in teres t ing case in re la t iv is t ic  quantum field theory (QFT)  in the p resence  
o f  ex terna l  sources.  The  phys ica l  s i tua t ion  is the  fol lowing.  We have ini t ia l ly  
a n u m b e r  o f  par t ic les ,  a so-ca l led  b a c k g r o u n d  system o f  par t ic les ;  then an 
in tervening  externa l  source  is swi tched  on,  with the la t ter  be ing  s t imula ted  
by  the b a c k g r o u n d  sys tem o f  par t ic les  to emit  a cer ta in  n u m b e r  o f  par t ic les .  
Here  we note  at the outse t  that  the final produc t s  o f  this c omp le x  process  
may,  in genera l ,  be different  f rom what  the in tervening  source  has in i t ia l ly  
emit ted .  F o r  example ,  the  ini t ial  par t ic les  p r o d u c e d  by  the externa l  source  
as s t imula ted  emiss ions  m a y  scat ter  off each  other ,  c rea t ing o ther  par t ic les ;  
or  a vi r tual  par t ic le ,  not  c apab l e  o f  p r o p a g a t i n g  to mac roscop i c  d is tances ,  
may  decay  to o ther  par t ic les .  The  genera l  analys is  for  the de r iva t ion  o f  the 
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transition amplitudes concerning such stimulated emission by the external 
sources in field theory is given in Section 2. An application of this work is 
then given to quantum electrodynamics (QED) in the presence of an external 
electromagnetic current in Section 3. Here we consider a situation where 
we have initially a background radiation of photons of arbitrary momenta 
and spins. The latter are then absorbed by the external current, thus stimulat- 
ing it for further emission and finally having an electron-positron pair 
escaping to the detection region at macroscopic distances. 

2. STIMULATED EMISSION BY EXTERNAL SOURCES IN QFT 

For simplicity of the presentation we consider an interacting real 
pseudoscalar ~b (x), with the latter coupled linearly to an external (c-number) 
source K(x).  The vacuum-to-vacuum transition amplitude is given by the 
well-known expression 

(0+10_) K =exp Y~ (i)n-1 f (dx1)""" ( d x n ) g ( x l ) ' ' "  K(xn)Gc(x1,. . .  
n~2 n[ d 

, x . )  

(1) 

(2) 

or 

Io ~ f dak exp[ik,  x - x ' ) ]  
G ( x - x ' ) = i  dp.2 p (/~ z ) (2~.)3 2~/k-~# z 

x exp[ • i(k 2 + ~2)1/2(x~ x~ (4) 

where the minus sign is for x~  x ~ and the plus sign is for x~  x ~ in the 
last exponential in (4), and p(tz 2) denotes the two-point spectral function. 

We write the external total source K(x)  as (Schwinger, 1970, 1973; 
Manoukian, 1986) 

K ( x )  = KI(X ) -[- K2(x ) '[- K3(x)  (5) 

where Kdx) ,  the intervening source, is switched on after the emission source 
Kl(X) is switched off, and the detection source K3(x) is switched on after 
the source K2(x) is switched off. The source Kl(x) acts as a preparatory 
stage for the emission of real (that is, on the mass shell) particles, which 
constitute the initial background of particles to the intervening source K2. 
On the other hand, K3 is the detection source, which detects and hence, 

(dx) = dx ~ dx 1 dx 2 dx 3 

where Go(x1, . . . ,  x~) are the connected Green's functions (in the absence 
of external sources). In particular, 

fo g f(dk) e~k~x-x'~ Gc(x , x ' )=-G(x -x ' )=  d/~2 p(/z 2 ) (21r)4k2+12_ie, e-~+0 (3) 
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"recognizes" the final prOducts of real particles of the complex process of 
stimulated emission by the intervening source K2. Since K~(x) and K3(x  ) 
deal with real particles on the mass shell, we write 

KI(x) = f d3x ' Sl (x-x ' )F(x ' ) ,  x~ -oo (6) 

g3(x) = f d3x ' S3(x -x ' )F(x ' ) ,  x ~  +oo (7) 

where F(x') is chosen so as to put the particles emitted and detected on 
the mass shell and may be conveniently chosen in the normalized form 

F(x') = f ~ ( 2 , r ) R l p ~  8(pZ+m z) e ipx' 
J (2~-) 

~ f ~ F ( p )  e ipx (8) 

and Sl(x), S3(x) are arbitrary: 

f ( d p )  S~(p) = S~(-p), j 1, 3 (9) 

As will be seen [equations (34) and (35) below], S*(p), with pO= 
+ (p2+ me)l/2, is (proportional to) the amplitude that a particle of momentum 
p is at the detection region, and S1(p), with pO= +(p2+ m2)1/2, is (propor- 
tional to) the amplitude that a particle of momentum p is at the emission 
sight. The x~ :~oo limits in (6) and (7), respectively, ensure that the emission 
and detection regions are far from the interaction region where the actual 
physical process of stimulated emission takes place. 

Upon defining 

.c(g2;Xn2+l,... ,Xn): f (N  (dxj)g2(xj))ac(xl,... ,Xn) (10) 
k j= 1 

for l <- n2 < n, 

H ~ ' ) ( K 2 )  = f(j=  (dxj)K2(xj))Gc(xb...,x,,) (11) 

we may rewrite the exponential factor in (0+10_) ~ in (1) as 

( )f( n~]l ) ( i ) n - I  2 n (dxj) 
n>2 n! (nl+n2+n3=n) nl n2 n3 \ j = l  

x K,(x,) .  �9 .Kl(Xn,)K3(xn,+,)... K3(x.,+.3)nc(K2; x , , . . . ,  x._.2 ) (12) 

Of particular interest are the bilinear terms in the sources K~, K3 in 
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(12). These are readily evaluated from (4) and (6)-(9) to be 

( i ) f d3k [Sj(k)l 2 
2Re -~KjG+K~ = - Z  (2~.)3 2k o , j = l , 3  (13) 

f iS*3(k)iS,(k) (14) 
d3k 

iKl G+K3 -- Z (2rr)a2k o 

with k ~ +(k2+ m2) 1/2, where we have used the spectral form 

p(/z 2) = Z~(I~ 2 - m E ) + continuum (15) 

in conjunction with (8). 
Similarly, if we define the free propagator G ~ (expressed in terms of 

the physical mass) 
f ( d p )  e "(x-y) 

G~ -Y) = ( 2 ~ ) 4  p2q  - m:-  ie' 

we obtain 

e ~ +0 (16) 

f (dx) K3(x)G~ = f d3k " * e -'ky ( 2 ~ k  d,S3 (k) (17) 

f(dx)GO(y_x)r,(x)=[ dak . eikY ( 2 ~ k  61Sl(k) (18) 
J J 

with k ~ = + (k2q  - m2) 1/2. Finally, we set, for j > 2, 

Ha(g2;x1, . . . , x j )=(-[- -]2+m2)  . .  . ( -[~]]+ma)I-Ic(g2;xl , . . . ,x j )  (19) 

HA(K2; Xa,. . .  , xj) = j ( d X l )  �9 �9 �9 (dxj) HA(K2; k l , . . . ,  kj) 
x exp[i(klXl +. . .  + k~xj)] (20) 

and define 

HA(K2; k,, - k2) = Zt~3(k l  - k2)d3k2 (21) 

to rewrite (1) from (12) and (17)-(21) as 

(0+10_) ~r = exp(�89 exp(F[S3, S~]) A exp(�89 (22) 

[ ~ (i)n-'H~.~(K2)) 
A=expk .~2  n! (23) 

/ 

F[S3, S l ]  ---- ~ /,/! 
n~2 (nl+n2+n3=n) l"ll l"12 n3 

where, from (11), 
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\~=1 (2~r)32k ~ 

x Ha(K2;  k , , . . . ,  k.3, - k . ~ + , , . . . ,  - k . _ . 2 )  

x (  " h  "2 dskJ i S , ( k j ) )  (24) 
\j=.3+l (2"n')32k ~ 

where Y~.,+.2+.~=.) stands for ~.,+.~+.~=.) with the following terms omitted: 
(n3 = n, h i = 0 ,  n2=0), ( n l=  n, n3=0, n2=0). The (n3= n =2, n l=0 ,  n2=0) 
term is included in the first exponential term on the right-hand side of (22). 
On the other hand, for (n3= n > 2 ,  nl =0,  n2=0), we may use the fact that 
Ha(K2;  k~, . . . , k . )  =-- Ha(0; k~, . . . , k . )  is independent  of the external source 
K2; hence, we use translational invariance to write 

H a ( O ; k  1 . . . .  , k , ) = - 6 ( k , +  ". "+k, ) IYlA(k ,  . . . .  , k , )  (25) 

6 ( k ~  " " " + k  ~  (26) 

for k ~  1/2, m > 0 .  [For m = 0 ,  the ( n 3 = n > 2 ,  n l=0 ,  n2=0) will 
again not contribute i f / 4 a ( k l , . . . ,  k , ) = 0  when any one or more of the 
kj = 0, as is the case in light-light scattering in QED due to gauge invariance.] 
A similar analysis holds for the (nL = n, n3 = 0, n2 = 0) terms. 

In a convenient discrete momentum notation (Schwinger, 1970, 1973; 
Manoukian, 1984, 1986) we rewrite F [ K s ,  K1] in (24) as 

F[S3, Sl]= E n! E 
n~2 nl+n2+n3=n nl n2 n3 kl,...,kn-n 2 

x i S * k , ' ' "  iS*k,J2IA(K2; k b . . . ,  k,~, - k , ~ + , , . . . ,  - k , _ , ~ )  

where 

x iSik,,~+~ �9 " " iSlk._.~ (27) 

r 1,,: S 'k= L(2~r)32kOj S * ( k )  (28) 

S,k= L(2~r)32kOj S , ( k )  (29) 

s~aCK2; k, . . . .  , k. 3, -k.~+,, . . . ,  -ko-.2) 

I-~j,2r d3k 1,/2/ 
= ~ k  o Ha(g2,  k , , . . .  (30) <,:, L(2 ) ,J J "k"~'-k"3+"'"'-k"-"2) 

Now we are ready to compare the expression in (22) with a unitarity 
expansion (Schwinger, 1970, Manoukian, 1986): 
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(o+lo_>" -- 

where 

ManoukJan 

oo 

~2 ~ ~ ~ • Nk,, Nk2,...+)K~ 
N = 0  N k l 4 - N k 2 +  . . . .  N M = 0  M k l + M k 2  + . . . .  M 

x ( N ;  /~k,, N k : . . . + [ M ;  Mk, , Mk2,-- . - )  K2 

x (M; Mk,, Mk2,...--10-) K' (31) 

(N; Nk,, Nk2,. . .+[M; Mk, ,  M k : . . . _ ) K 2  

-=(N; Nk,, Nk2 . . . .  out]M; Mk,, Mk2,...in) ~q (32) 

is the object of interest and represents the transit ion ampl i tude  for stimulated 
emission of N particles as f ina l  products with various momenta, when there 
are initially M panicles with various momenta, by the intervening source 
K~, and the former obviously depends on K2. 

By carrying out a Taylor expansion in S* and $1 of exp(F[S~, $1]) 
with the latter as defined in (27), we obtain 

exp(F[ $3, S,])= ~. X ~ ~', 
N = 0  N k t + N k 2 +  . . . .  N M = 0  Mk + M k 2  + . . . .  M 

X ( S ~ k l ) N k !  ( S 3 ~ k 2 ) N k 2  �9 " �9 ( S | k | ) M k '  ' ( S a k 2 )  Mk2 �9 �9 �9 

Nk, ! Nk2 -~ M k  I ! Mk 2 ! 

x 3 
\ ~r*3k2, ] \ Srzk,] \ ~Tlk2, ] 

x exp(F[ T3, T,]) (33) 
T3 = 0 ,  Tl = 0  

Hence, from (22), (27), (31), and (33) we obtain 

(0+IN; Nk,, Nk=, . . . + ) K3 

( i  )(zl/2iS~3kt)Nk, 1/2" * N (Z '$3k2)k~ (34) 
=exp ~ K 2 G + K 3  (Nk,!),/2 (Nk f l ) , /2  ' ' '  

(M; Mk,, Mk:...--10_) K' 

(Mkl!) 1/2 (Mk2 [) t/2 

(N; Nk,, Nk~,...outlM; Mk,, Mk: . . . in)  ~2 
( Z )  - ( N + M ) / 2  . [ ~ x Nk, ll r "~ Nk ~ 

= (Nk I Nkfi . -- :  Mk, ,Mk2[ . . . ) ' / 2A~- - i~ )  t - i ~ )  "'" 
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x(- i  8i)svt"(-i 8 )Mk2...exp(F[T3, T,]) (36) 
\ CSTlk,,] \ aTlkz 73=0,r,=0 

where A is defined in (23) and F[  T3, 7"1] is defined in (27). The wavefunction 
renormalization function contribution (Z) -(N+M)I2 in (36) arises as a con- 
sequence of the completeness relations that have to be satisfied: 

oo 

Y X I<0+IN; Nk,, Nk2, �9 �9 +)K3] 2= 1 (37) 
N = 0  Nkl + Nk2 + . . . .  N 

Z I(M; Mk,,  Mk2, �9 �9 �9 -10-)K'I 2 :  1 (38)  
M = O  Mkl + Mk2 + . . . .  M 

as are readily verified from (13), (34), and (35). 
The expression in (36) gives the final general form for the transition 

amplitudes in question for stimulated emission and includes connected and 
disconnected processes. In particular, A denotes the amplitude that an 
arbitrary number of particles is produced by the source K2 and after their 
interactions the final products are absorbed back by the source. 

3. APPLICATION 

We apply our formalism to QED, to lowest order in the fine structure 
constant, in the presence of an external conserved electromagnetic current 
J~(x): @J~(x)= O, Q~J~(Q)= 0. We consider the situation where initially 
we have a background radiation of photons of arbitrary momenta and spins 
before the intervening current J~ is switched on and finally have an electron- 
positron pair escaping to a detection region, with the momenta and spins 
of the latter particles unspecified. 

We modify the QED Lagrangian density ~QE~) by adding source terms: 

LPQED(X) + ~ (X) lis (x) + ~(X) r I (X) + A ~" (x)J. (x) (39) 

where r/ and ~ are Fermi sources, which are eventually set to zero, and in 
this limit we also set J~.(x)~ J~(x) with O~'J~(x)= 0. Then the amplitudes 
for finding an electron and a positron in a detection region and a photon 
in an emission region are, respectively, proportional to (Manoukian, 1986) 

(2m dwp)l/2~7(p)u(p , or) = r/p*~_ (40) 

(2m dwp)l/2f(p, o-)~7(-p) = ~7"~.+ (41) 

(dw.)w2@(q, A)J~(q) = J~;, (42) 

where 

d3p 1 
(43) dwa (2r 2p ~ 
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p0 = +(p2+ m2)1/2, q0 = Iql (44) 

Y. u(p, cr)~(p, o ')= ( - T p +  m ) / 2 m  (45) 
o" 

E v(p, o-)e(p, o-)= -(3,p + m)/2m (46) 
o" 

and (Schwinger, 1970) 

q-q ~ + q"q 
g ~ " -  t- ~ e~(q, A)e~(q, h)* (47) 

(qtT/) A=l,2 

q~ = (Iql, q), qg = ([ql, -q)  (48) 

The amplitude in question is then readily obtained from (36) to be, 
where all the initial photons are absorbed by the external current J~, 

s~-= (2; (lp,, o-, - ) ,  (lp~, o-', +)outlN; Nq~x~, Nq~A2,...in) 4 

= ie(2m dmp~)l/2(2m dr%:) ~/2 a(p, ,  tr)T"v(p2, t r ' ) j2(p~-P2)  
(Pl --P2) 2 

) . Jq l /~ l )  ql l (Jq2x2)Nqzx2 
x (N x ~)1/2 (Nq2x2!)l/2 " " " exp JD+J (49) 

ql I" 

Let 

Q = pl +p2 - Nq~xlql-  Nq2x2q2 . . . .  

Then the transition probability of the process in question may be written as 

(2~r) 4 Y~ Y ~ ( p l + p E - S q m q l  
pI,P2 N = 0  Nqi A l-/" Nq2x2 + . . . .  N 
0-~ 0" 

- Nq2,~2 q 2 . . . . .  Q )]~I[ 2 (50) 

or, upon using the integral representation 

3(Pl + P2-  Nq,alql - Nq2,~2q2 . . . . .  Q) 

1 
I (dx) exp i[pl + p 2 -  Nq~,~lq~ - Nq2,x2q2 . . . . .  Q]x (51) 

- (2~r)4 

and the identity (Manoukian, 1984, 1986) 
/ I t  12 - i q 2 x x N  x ([Jq~12e-'q'~)Nq, ~,tlJq~A~[ e ) q22. . .  

Nql~l+Nq2~2+ .... N Nqlal ! N%~2! 

q,A / 
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and evaluating in the process the photon spectral function to lowest order 
(Schwinger, 1973; Nishijima, 1969), we obtain from (50) for the transition 
probability in question 

a I f d3k f ~~ dM2 1 [ 2m2' 
(dx)[exp(- iQx)]  ~ j 4,.2 M---5- ~-~6 ~ 1 + -~-T) 

•  1/2 
M2 ] [J~(k )*J~(k ) ]exp( ikx )exp( f  daq 

(2r 

x [J~(q)*j2(q)]{exp[i(q. x-Iqlx~ - 1}) (53) 

where k~ 1/2, that is, k 2 = - M  2, q~ I. 
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